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Project Objectives.

The objectives of the research funded by this grant were to develop, design and construcf

a condensation nucleus counter (CNC) for use in the stratosphere on NASA U-2 aircrafc

and to use the instrument in the Aerosol Climatic Effects program. In addition the

instrument was to be calibrated in the laboratory and provided with an inlet which

permitted near isokinetic sampling.

Project Accomplishments.

A condensation nucleus counter which operated at stratospheric pressures was developed,

designed and constructed. It was calibrated in the laboratory. Its response as a function

of particle size and concentration was reported. The was the first time that the response

of such an instrument was verified in the laboratory.

An inlet was constructed which provided near isokinetic sampling. The resulting

instrument, the U-2 CNC, was deployed on NASA U-2 aircraft in the study of the

climatic effects of aerosol. These studies occurred in March, April, May, July, November

and December of 1992 and in April, May, June and December of 1983.

The U-2 CNC was used in the study of the aerosol cloud resulting from the eruption of El

Chichon. It permitted the observation of new particle formation in the stratosphere.

Publications.

Reprints of papers resulting from this research are found in Appendix A.

Wilson, J. C. , Hyun, J. H., Blackshear, E. D., "The function and response of an improved

stratospheric condensation nucleus counter," J. Geophys. Res, 88, 6781-6785, 1983.

Wilson, J. C., Blackshear, E. D., Hyun, J. H., "Changes in the sub-2.5 micron diameter

aerosol observed at 20 km altitude after the eruption of El Chichon", Geophys. Res. Lett.,

10, 1029-1032, 1983.

Subsequent Work.

Following the completion of the Aerosol Climatic Effects study, the U-2 CNC and its

successors, the ER-2 CNC and the ER-2 CNCII, have been used in a number of studies.

They include: Stratosphere-Troposphere Exchange Project, Airborne Antarctic Ozone

Experiment, Airborne Arctic Stratospheric Expedition, Airborne Arctic Stratospheric

Expedition II, Stratospheric Photochemistry, Aerosols and Dynamics Expedition,

Airborne Southern Hemisphere Ozone Experiment and Measurements for Assessing the

Effects of Stratospheric Aircraft. Appendix B contains a partial list of papers making use

of the CNC data from these experiments. The instrument develope d on this grant has

made a significant contribution to understanding stratospheric aerosol, chemistry and

dynamics.
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The Function and Response of an Improved Stratospheric

Condensation Nucleus Counter

J. C. WILSON, J. H. HYUN, AND E. D. BLACKSHEAR I

Unit,ersity of Minnesota, Particle Technology Laboratory, Minneapolis, Minnesota 55455

An improved condensation nucleus counter (CNC) for use in the stratosphere is described. The
University of Minnesota CNC (UMCNC) has a sequential saturator and condenser and uses n-butyl
alcohol as the working fluid. The use of a coaxial saturator flow, with aerosol in the center and filtered,
alcohol-laden air around it, speeds the response of this instrument and improves its stability as pressure

changes. The counting efficiency has been studied as a function of particle size and pressure. The
UMCNC provides an accurate measure of submicron aerosol concentration as long as the number
distribution is not dominated by sub 0.02 um diameter aerosol. The response of the UMCNC is
compared with that of other stratospheric condensation nucleus counters, and the results of a (near)
comparison with a balloon-borne condensation nucleus counter are presented. The UMCNC has oper-
ated 14 times on a NASA U-2 aircraft at altitudes from 8 to 21.5 km.

t

INTRODUCTION

The University of Minnesota condensation nucleus counter

(UMCNC) utilizes a sequential saturator and condenser and

n-butyl alcohol as the working fluid. The use of a coaxial

saturator flow has improved the response of the instrument.

The instrument has operated 14 times on NASA U-2 aircraft

at altitudes ranging from 8 to 21.5 km.

The response of the instrument has been studied and is

compared with that of other condensation nuclei counters

(CNC's). The UMCNC provides an accurate measure of sub-

micron aerosol number concentration as ]ong as the distri-

bution is not dominated by particles smaller than 0.02/am in

diameter. This response is similar to the response expected of

other stratospheric CNC's.

The UMCNC was flown in an airmass which (it was hoped)

had been sampled the previous day by a University of Wyom-

ing CNC. The two measurements are quite similar.

CONDENSATION NUCLEUS COUNTERS (CNC's):

TYPES AND RESPONSE

CNC's are often used to measure the number concentration

of particles in the diameter range from about 0.01 to about 1.0

,urn. When used with a size selecting device such as a diffusion

battery or electrical mobility analyzer, a CNC can be used to

obtain size distribution measurements. They are particularly

useful in studying particles that are too small to be con-

veniently detected by more direct means.

CNC's function by creating a supersaturated vapor which

condenses on particles in the aerosol sample being measured.

These nuclei then grow to sizes that permit easy detection.

Alcohol or water is often used as a working fluid, and the

resulting droplets are usually detected by optical means.

A number of different techniques have been used to create

the supersaturated vapor. Expansion chamber instruments are

reviewed and described by Nolan [1972], Liu et al. [1975],

Miller and Bodhaine [1982a] and Schmitt et al. [1982]. Ther-

mal gradient diffusion chambers that create sufficient super-

' Now at IBM Corporation, Poughkeepsie, New York 12602.
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saturations to detect submicron particles have been described

by Rosen et al. [1974, 1978] and tFoppel et al. [1979]. Con-

tinuous flow counters with sequential saturation and con-

densation chambers are described by Bricard et al. [1974,

1976], Sinclair and Hoopes [1975], Agarwal and Sere [1980],

and Rosen and Hofinann [1981]. Cadle and Langer [1975] and

Kousaka et al. [1982] describe mixing type CNC's.

Not all particles are counted by CNC's. Several factors de-

termine whether a given particle can be caused to grow to a

detectable size in a given counter. They include the super-

saturation of the vapor and the period of time the particle is

exposed to the supersaturation; the physical properties of the

working fluid; the wetability, reactivity, or solubility of the

particle; and the working fluid and the sensitivity of the dro-

plet detector. Concentrations indicated by a condensation nu-

cleus counter may differ from the actual aerosol concentration

because small particles may be lost in the sampling tubes and

instrument components by diffusion, electrostatic removal,

thermophoresis, or diffusiophoresis. Some particles may evap-

orate if they are heated in the instrument. Large particles are

often lost in the instrument plumbing by impaction or settling.

The response of various CNC's to aerosols of known size,

composition, and concentration has been experimentally stud-

ied. Sinclair [1982], Liu et al. [1982], and Miller and Bodhaine

[1982b] provide reviews and reports of these studies that sup-

port several generalizations. Many CNC's count nearly 100%

of those submicron particles that are larger than 0.05 pm in

diameter regardless of the chemical composition of the aerosol

or working fluid. Counting efficiencies generally begin to de-

crease with particle size at some diameter between 0.01 and

0.05 /am. In this size region, the counting efficiency may

depend upon the chemical composition of the aerosol as well

as on the design of the counter.

STRATOSPHERIC CONDENSATION NUCLEUS COUNTERS

The heat and mass transfer processes that govern CNC

response depend upon pressure and temperature. Instruments

that operate in the stratosphere must sample from air at low

and varying pressures, and different techniques have been used

to produce the necessary supersaturations in stratospheric in-

struments. A number of investigators have built CNC's that

use rapid expansion of a water-vapor saturated sample to

achieve the necessary supersaturation. To operate in the
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Fig. 1. Diagram of the University of Minnesota condensation nu-
cleus counter showing the coaxial flow saturator, condenser, and
particle detection optics. The elements _hose dimensions are important
in determining the supersaturation are drawn to scale.

stratosphere, these instruments require sample pressurization

prior to the expansion [Junge et al., 1961; KaseIau, 1974;

Haberl, 1975]. The Cadle and Langer [1975] instrument that

creates the supersaturation by mixing cold air with the hu-

midified sample was also pressurized for operation in the

stratosphere.

A number of instruments that operate at ambient strato-

spheric pressures have been developed. Rosen et al. [1974,

1978] deployed thermal gradient diffusion cloud chambers

that use ethylene glycol as the working fluid. In the instrument

developed by Bricard et al. [1974, 1976], n-butyl alcohol

vapor diffuses into the sample as it flows through a heated

saturator; then, the supersaturation develops as the sample

flows through the cooled condenser. Rosen and Hofmann

[1981] use ethylene glycol in an instrument which also has a

sequential saturator and condensor and which functions to
altitudes of 30 km.

Various comparisons and tests have been made by using

these instruments. Cadle et al. [1975] compared the Langer,

Rosen et al., and SANDS (Haber]) instruments with a Pollak

counter which had been calibrated by Liu et al. [1975]. This

work was done at pressures near one atmosphere. The Rosen

et al., SANDS, and Pollak counters generally agreed to within

30% or better when counting aerosols generated from sulfuric

acid solution and having diameters as small as 0.04 _m. Rosen

et al. [1978] operated the Kaselau and Rosen et al. instru-

ments on the same balloon flight and found they generally

agreed to within a factor of 2 while counting concentrations

that varied over 2 orders of magnitude. Most investigators

report laboratory measurements made on generally un-

characterized aerosols as pressure is reduced. These measure-

ments often were used to determine the altitude range over

which the instruments function. Rosen and Hofmann tested

their instruments in the stratosphere by increasing the super-

saturations in flight. When the particle count did not increase,

they concluded that the supersaturations they normally used

were sufficient to detect stratospheric aerosols. In a theoretical

study, Junge et al. estimated the effects of particle losses by

diffusion and settling in the instrument and predicted that

losses of both small and large particles would increase with

altitude.

Although detailed experimental studies of these instruments'

responses as a function of pressure, particle size, and compo-

sition have not been carried out, the studies cited above and

experience with atmospheric pressure counters suggest the fol-

lowing generalizations. The various stratospheric instruments

that use different mechanisms for creating supersaturations,

different working fluids, and operating within their specified

altitude ranges probably detect, with a relatively high or pre-

dictable efficiencies, sulfuric acid particles having diameters

somewhat larger than a few hundreths micron. The instru-

ments would, therefore, be expected to agree when sampling

stratospheric aerosols having number distributions dominated

by submicron particles with diameters larger than this size.

The losses of particles by diffusion will vary from instrument

to instrument and will increase for smaller particles at higher

altitudes, and like the conventional CNC's, the stratospheric

counters are likely to be increasingly inefficient for particles

smaller than 0.01 l_m. Thus, the various instruments would be

expected to disagree when measuring aerosols where the

number distribution is dominated by ultrafine aerosol. Such

distributions may have occured during events of new particle

formation reported following the eruptions of Alaid [Hofinann

and Rosen, 1981], St. Helens [Hofinann and Rosen, 1982], and

El Chichon [Wilson et al., 1982; Rosen and Hofmann, 1982].

THE UNIVERSITY OF MINNESOTA CNC

The University of Minnesota condensation nucleus counter

(UMCNC) (Figure 1) is a continuous-flow instrument with

sequential saturator and condenser which functions on a

NASA U-2 aircraft at altitudes from 8 to 21.5 km at near-

ambient pressure. The instrument uses n-butyl alcohol as the

working fluid and differs from prior designs using the sequen-

tial saturator and condenser. The principal innovation is the

use of a coaxial flow: The aerosol sample is introduced on the

axis of the vertical saturator and is surrounded by a flow of

filtered, alcohol-laden air. After the coaxial flow is formed, it

passes out of the saturator section and into the condenser

where it is cooled. This coaxial flow system shortens the in-

strument response time, reduces the losses of particles in the

saturator by diffusion, and causes all particles to experience

nearly the same supersaturations and flow velocities. The use

of this system greatly reduced the variations in instrument

response which were observed as pressure was changed in a

prototype lacking it [Wilson et al., 1982].

Table 1 lists the operating conditions and component di-

mensions which have been used in the UMCNC. The instru-

ment performance is not very sensitive to small variations in

these conditions.

TABLE 1. Operating Conditions of the UMCNC

' ' Variable

Instrument pressure range 40-400 mbar
Saturator temperature 29:C
Condenser temperature 5:C
Sample flow rate _4.5 cm 3 s -_
Total flow rate ~ 30 cm 3 s-

Working fluid n-butyl alcohol
Condenser length 6 cm
Condenser diameter 1.5 cm
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The UMCNC operates at nearly constant volumetric flow

rate. The sample flow rate is monitored continuously by a

capillary tube flow meter, where the output is used to control

the pump. The ratio of sample flow to saturator flow remains

nearly constant over the range of operating pressures due to

the use of capillary flow elements in both branches.

Droplets formed in the condensor are individually counted

in an optical particle counter. The present electronics permit
concentrations up to 2500 cm -_ to be counted. The coin-
cidence correction is about 20% at this concentration.

The number of particles per unit mass of air is calculated

from the count rate, the sample flow rate, the absolute pres-

sure in the instrument, and the temperature of the sample
flowmeter. These variables are continuously recorded by a

data logger. The calculation of ambient concentration requires

ambient pressure and temperature data which are supplied by

other investigators on the U-2. The ambient pressure differs

slightly from the instrument pressure due to the airplane ve-

locity (approximately Mach 0.7). Ambient temperatures are

considerably lower than instrument temperatures. The strato-

spheric, ambient number concentrations generally exceed

those in the instrument by about 25% due to these differences.

LABORATORY DETERMINATION OF UMCNC PERFORMANCE

The quantity measured by condensation nuclei counters is

usually referred to as the concentration of condensation nuclei

or Aitken nuclei. To define more precisely the meaning of the

UMCNC output, laboratory measurements were made of in-

strument response to monodisperse, singly charged particles at

a range of pressures. The experimental setup is shown in

Figure 2. Di-octyl phthalate (DOP) particles of 0.054 #m in

diameter were generated by a system consisting of an atom-

izer, a radioactive neutralizer, a condensation generator, a dif-

ferential mobility analyzer (DMA), a second neutralizer and a

second DMA. The second neutralizer and DMA served to

reduce the number of doubly charged particles in the test

aerosol to near zero. Liu and Lee [1975] and Liu attd Pui

[1974] describe the components used in the generation of the

DOP aerosol. Particles between 0.006 ,urn and 0.01 gm in

diameter were generated by using a flat flame aerosol gener-

ator [Vikayakumar, 19821 fed with sodium chloride. The

chemical composition of the resulting particles is unknown.

Since very few particles in that size range carry two charges

after neutralization, only one neutralizer and DMA were used

to select the test aerosols.

SCHEMATIC OF CNC COUNTING EFFICIENCY EXPERIMENT

i ILEC 

l t CRITICAL

CAPILLARY TUBE

I _ _,-wAY

ABSO!o-_JLuLUTET VALVE

;,_u__ u_EI
Fig. 2. Diagram of experimental setup used Io determine the re-

sponse of the UMCNC to singly charged, monodisperse aerosol.
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Fig. 3. Response of the UMCNC to monodisperse, singly
charged aerosol. The vertical axis gives the fraction of the particles
enlering the instrument which are counted. The 0.56/am aerosol was
DOP. The smaller particles were produced in a flat-flame generator
fed with sodium chloride and are of unknown chemical composition.

The test aerosols were passed through a pressure-reducing

valve and then divided with approximately 30 cm 3 s-I pass-

ing through a tube 35 cm in length to the UMCNC and the

rest passing through a tube 16 cm in length to a Faraday cage

mounted on a Cary 401 electrometer. The total flow was ap-

proximately 156 cm 3 s -_ or 212 cm 3 s-1 depending upon the

critical orifice used in the test. Volumetric flows and absolute

pressure were measured in each branch. The electrometer cur-

rent and the flow data. were used to calculate the con-

centration of the singly charged particles reaching the elec-

trometer. Corrections were made for pressure differences and

for diffusion losses in the tubes by using the formula of Gor-

mely and Kennedy [1949] in order to calculate the con-

centration of the aerosol actually entering the UMCNC. The

ratio of the concentration determined by the UMCNC to the

actual value is plotted as a function of particle size and pres-

sure in Figure 3. A range of +0.06 represents a reasonable

measure of the repeatability of the efficiency measurements.

Figure 4 shows the chamber detection efficiency as a func-

tion of particle size. The chamber detection efficiency equals

the fraction of the particles actually reaching the saturator

which are counted. This figure is determined from the data in

Figure 3 by accounting for the diffusion losses in the sample

flowmeter and injection tube which have a combined length of

10.4 cm. The curves are nearly horizontal from 0.054 to 0.01

pm which suggests that the changes in efficiency shown in

Figure 3 in this size range are caused by diffusion losses in the

instrument itself. Thus, the curves in Figure 3 between 0.01

and 0.056 pm were drawn with this assumption.

Since the number distribution of stratospheric aerosol is

dominated by submicron particles, the upper size cutoff of the

UMCNC is not critical. However, it is expected that particles

larger than a few microns will be lost in the plumbing by

impaction.
, .

STRATOSPHERIC PERFORMANCE OF THE UMCNC

The temperatures and flow rates essential for correct oper-

ation of the UMCNC are monitored continuously in flight. In

the 14 research flights undertaken to date, the thermodynamic

conditions for efficient particle counting have been maintained

in actual use on the U-2 aircraft. In another flight, a filter was

placed on the inlet, and the indicated particle concentrations

• /

/ .
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Fig. 4. Detection efficiency of the saturator-condenser and optical

system for the test aerosol. The vertical axis shows the fraction of the
particles reaching saturator which are counted.

were usually zero. Occasional nonzero counts were observed

and may have been artifacts but were infrequent enough so

that their contribution to UMCNC output can be neglected.

The UMCNC inlet is designed to draw samples from out-

side of the aircraft's boundary layer and to avoid sampling

bias due to the mismatch between sampling and aircraft veloc-

ity. Thus, on the aircraft the sampled aerosol passes through

28 cm of tubing at a flow of 30 cm 3 s-t before reaching the

instrument. Additional losses of particles by diffusion can
occur in that tube. These losses have been estimated and in-

corporated into Figure 5, which shows the estimated counting

efficiency of the UMCNC in the stratosphere as a function of

altitude and particle size for the usual inlet configuration. In

this case, the instrument pressure equals 1.1 times the ambient

pressure due to partial dissipation of the ram pressure.

The chemical composition of the aerosol may also effect the

counting efficiency. The gradual decrease in counting ef-

ficiency shown in Figure 5 is due to losses of particles by

diffusion. The sharp decrease occurs when the system is no

longer able to cause the particles to grow efficiently. The

dashed line in Figure 5 indicates the efficiency which would be

observed if the chamber detection efficiency remained high

(92°/.o in this case). Comparisons of various calibrations done

on the TSI CNC, a commercial instrument using n-butyl alco-

hol as the working fluid, suggest that it detects sub-0.01 pm

sulfuric acid particles more efficiently than flame generated

1.0, I I i j i I , + i I = ' ' '

'_ Altitude j Km_

_ 0.8

+.o.+
z+
U 0 • ¢,J/ //
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Fig. 5. Estimates of UMCNC counting efficiency at various alti-
tudes. Losses in the inlet are included.

aerosols [Aoarwal and Sere, 1980; Madeline and Metayer,

1980; Brockmann, 1981; Vijayakumar, 1982]. Stratospheric

submicron aerosols are mainly sulfuric acid and water, and

the TSI CNC and UMCNC are chemically similar. If they

respond similarly, the lower size limits for efficient counting of

stratospheric aerosols may be smaller than indicated for the

test aerosols, and the efficiency curves would follow the

dashed lines in Figure 5 to smaller sizes and then decrease

sharply.

COMPARISON OF THE UMCNC WITH THE COUNTER

OF ROSEN AND HOFMAN_' [1981]

On December 8, 1982, the University of Wyoming group
flew a balloon with a Rosen and Hofmann counter into the

stratosphere above Laramie, Wyoming. On the next day, a

NASA U-2 flew to Grand Junction, Colorado, in hopes of

meeting the same air mass that had been over Laramie the

previous day and whose trajectory had been estimated at

NASA Ames Research Center. (The planned, more intimate

rendezvous had been prevented by technical difficulties.) A

portion of the December 9 Wyoming data (D. Hofmann, per-

sonal communication, 1982) is plotted on Figure 6 with the
UMCNC data from December 10. The UMCNC data at alti-

tudes below 20 km were gathered during a nearly steady de-

scent lasting 25 min. The data above 20 km were taken about

90 min later in the flight.

Assuming that the measurements occurred in the same

airmass, the instruments seem to respond similarly. The two

profiles show many of the same features, and a small shift in

altitudes would bring the two profiles into close agreement.

The Wyoming instrument samples stratospheric aerosol at

nearly 13 cm 3 s -_ through a tube 15.2 cm long after which the

aerosol enters a saturator (D. Hofmann, personal communi-

cation, 1982). The diffusion losses in transport to the saturator

are about 1/3 those suffered in the UMCNC at the same

altitude. Additional losses may occur in the saturator itself.

The efficiencies of the two instruments approach one another

for larger particles and as long as the sampled aerosol is not

dominated by sub-0.02 _m particles, they should agree.

DISCUSSION

The UMCNC has been tested in the laboratory and is capa-

ble of efficiently detecting particles as small as 0.008 /_m in

3O

2_

:_EZ o

-- UMCNC " -_ .........I0

........Rosen and Hofmann(lgBl)CNC

I I t I f I I I I l I I I I I I I _ I I

la 40 10 40 IO0 400

Concentration, par ticles/cm 3

Fig. 6. Aerosol concentration profiles measured on December 9
over Laramie, Wyoming, by the Wyoming group and on December
10 over Grand Junction, Colorado, with the UMCNC. Efforts were
made to make the measurements in the same airmass.
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diameter. However, diffusion losses in the sample line and

sample flowmeter reduce the counting efficiency significantly

for stratospheric measurements of particles having diameters

below 0.02/lm. The UMCNC provides an accurate measure of

the aerosol number concentration as long as the size distri-

bution is not dominated by sub-0.02 pm particles. It is ex-

pected that this is also true of other stratospheric CNC's.
Continuous flow counters are well suited for use with diffu-

sion batteries or mobility analyzers to determine aerosol size

distributions. In such applications it is essential to know the

counting efficiency of the CNC as a function of particle size.

The next step in the development of the UMCNC should

involve development of a size selective inlet to permit determi-

nation of size distributions for particles smaller than 0.1 /_m.

At that time, the diffusion losses of small particles can be

taken into account and reduced by relatively modest design

changes.

During its first year of operation, the UMCNC has oper-

ated 14 times in the stratosphere, both before and after the

eruption of the E! Chichon volcano. These measurements have

contributed to our knowledge of the stratospheric aerosol size

distribution and its evolution following the volcanic injection.

Reports concerning these measurements are being prepared.

Acknowledgments. We appreciate the helpful discussions with B.
Y. H. Liu and D. Y. H. Pui. Discussions with R. Parzyck of TSI were

very helpful in making best use of TSI CNC parts used in the
UMCNC. This work was supported by the National Aeronautics and
Space Administration ACE Program, James B. Pollack, Chief Scien-
tist. Particle Technology Laboratory Report 486.

REFERENCES

Agarwal, J. K., and G. L Sere, Continuous flow, single-particle-
counting condensation nucleus counter, J. Aerosol Sci., 11, 343-
357, 1980.

Bricard, J., P. DeLattre, and G. Madelaine, Counting of Con-

densation nuclei at low pressures: Its application to photolysis of
gaseous impurities in the stratosphere, in Proceedings of the Third
Conference on the Climatic Impact Assessment Program, Rep.
DOT-TSC-OST-74-15, U.S. Dept. Transp. Washington, D. C.,
1974.

Bricard, J., P. Delattre, G. Madelaine, and M. Pourprix, Detection of

ultrafine particles by means of a continuous flux condensation
nuclei counter, in Fine Particles, edited by B. Y. H. Liu, Academic,
New York, 1976.

Brockmann, J. E., Coagulation and deposition of ultrafine aerosols in

turbulent pipe flow, Ph.D. Thesis, Univ. of Minn., Minneapolis,
1981.

Cadle, R. D., and G. Langer, Stratospheric Aitken particles near the
tropopause, Geophys. Res. Lett., 2, 329, 1975.

Cadle, R. D., G. Langer, J. B. Haberl, A. Hogan, J. M. Rosen, W. A.
Sedlacek, and J. Wegrzyn, A comparison of the Langer, Rosen,
Nolan-Poltak and SANDS condensation nucleus counters, J. AppL
MeteoroL, 14, 1566, 1975.

Gormley, P. G., and J. M. Kennedy, Diffusion from a stream flowing
through a cylindrical tube, Proc. R. Irish Acad., 52-A, 163-169,
1949.

Haberl, J. B., Stratospheric Aitken nuclei counter, Rev. Sci. lnstrum.,
46, 442, 1975.

Hofmann, D. J., and J. M. Rosen, Balloon-borne observations of

stratospheric aerosol and condensation nuclei during the year fol-
lowing the Mr. St. Helens eruption, J. Geophys. Res., 87(C13),
11,039-11,061, 1982.

Hofmann, D. J., and J. M. Rosen, Stratospheric aerosols and con-
densation nuclei enhancements following the eruption of Alaid in

April 1981, Geophys. Res. Lett., 8, 1231, 1981.
Hoppel, W. A., S. Twomey, and T. A. Wojciechowski, A segmented

thermal diffusion chamber for continuous measurements of CN, J.

Aerosol ScL 10, 369, 1979.
Junge, C. E., C. W. Chagnon, and J. E. Manson, Stratospheric aero-

sols, J. Meterol., 18, 81-108, 1961.
Kaselau, K. H., Measurements of aerosol concentration up to a

height of 27 kin, Pure Appl. Geophys., I12, 877, 1974.
Kousaka, Y., T. Nida, K. Okuyama, and H. Tanaka, Development of

a mixing type condensation nucleus counter, J. Aerosol Sci., 13,
231, 1982.

Liu, B. Y. H., and K. W. Lee, An aerosol generator of high stability,
Am. Ind. Hyg. Assoc. J., 36, 861, 1975.

Liu, B. Y. H., and D. Y. H. Pui, A submicron aerosol standard and
the primary, absolute calibration of the condensation nuclei coun-
ter, J. Colloid Interface Sci., 47, 155-171, 1974.

Liu, B. Y. H., D. Y. H. Pui, A. W. Hogan, and T. A. Rich, Calibration
of the Pollack counter with monodisperse aerosols, J. Appl. Meteo-

rol., 14, 46, 1975.
Liu, B. Y. H., D. Y. H. Pui, R. L. McKenzie, J. K. Agarwal, R.

Jaenicke, F. G. Pohl, O. Preining, G. Reischl, W. Szymanski, and P.

E. Wagner, Intercomparison of different 'absolute' instruments for
the measurement of aerosol number concentrations, J. Aerosol Sci.,

13, 429, 1982.
Madelaine, G., and Y. Metayer, Note, .I. Aerosol Sci., 11, 358, 1980.
Miller, S. W., and B. A. Bodhaine, Supersaturation and expansion

ratios in condensation nuclei counters: An historical perspective, J.

Aerosol Sci., 13, 481, 1982a.
Miller, S. W., and B. A. Bodhaine, Calibration of Pollak condensation

nuclei counters using charged, monodisperse aerosols, .I. Aerosol
Sci., 13, 419, 1982b.

Nolan, P. J., The photoelectric nucleus counter, Sci. Proc. R. Dublin
Soc., A4, 161, 1972.

Rosen, J. M., and D. J. Hofmann, Stratospheric condensation nuclei,
Rep. Ap-61, Univ. of Wyoming, Laramie, 1981.

Rosen, J. M., and D. J. Hofmann, Aerosol profiles over Laredo,
Texas, during May 1982, Rep. VWY/DPA/AP-72, Univ. of Wyom-

ing, Laramie, 1982.
Rosen, J. M., R. G. Pinnick, and R. Hall, Recent measurements of

condensation nuclei in the stratosphere, in Proceedings 3rd Confer-
ence Climatic Impact Assessment Program, DOT-TCS-OST-74-15,
Dept. of Transp., Washington, D. C., 1974.

Rosen, J. M., D. J. Hofmann, and K. H. Kaselau, Vertical profiles of

condensation nuclei, J. Appl. Meteorol., 17, 1737, 1978.
Schmitt, J. L., J. L. Kassner, Jr., and J. Podzimek, The University of

Missouri-Rolla, absolute Aitken nucleus counter, J. Aerosol Sci., 13,
373, 1982.

Sinclair, D., Particle size sensitivity of condensation nucleus counters,
Atmos. Environ., 16, 955, 1982.

Sinclair, D., and G. S. Hoopes, A continuous flow condensation nu-
cleus counter, J. Aerosol Sci., 6, 1, 1975.

Vijayakumar, R., Ultrafine aerosol generation using a premixed flat
flame, Ph.D. Thesis, Univ. of Minnesota, Minneapolis, 1982.

Wilson, J. C., E. D. Blackshear, and J. H. Hyun, An improved,
continuous-flow condensation nucleus counter for use in the strato-

sphere, J. Aerosol Sci., in press, 1982.

(Received November 22, 1982;
revised April 12, 1983;

accepted April 20, 1983.)



GEOPHYSICAL RESEARCH LETTERS, VOL. 10, NO. 11, PAGES 1029-i032, NOVEMBER 1983

CHANGES IN THE SUB-2.5 MICRON DIAMETER AEROSOL OBSERVED AT 20 KM

ALTITUDE AFTER THE ERUPTION OF EL CHICHON

J. C. Wilson I, E. D. Blackshear 2, J. H. Hyun I

Ipartlcle Technology Lab, University of .Minnesota, Minneapolis, MN 55455

21BM Corporation, Fishkill, NY 12524

/ $_,'i / _J//f'J

i'

Abstract. Measurements of sub-2.5 _m aerosol

concentration were made from a NASA U-2 aircraft

by several experimenters before and after the

eruptions of E1 Chichon in March and April of

1982. Concentrations of sub-2.5 _m diameter

particles encountered between 19.6 and 21.6 km

altitude were nearly uniform over large distances

in regions thought to be unaffected by E1 Chichon.

Comparisons of measurements made with three

instruments suggest that particles smaller than

• I _m in diameter contributed significantly to

the number distribution of these non-E1 Chlchon

aerosols. Measurements of large concentrations of

sub 0.I _m particles in April and May 1982 imply

that new particle formation occured following the

eruption. Measurements made in November and

December of 1982 showed decreased numbers of sub-

O.l_m particles compared to the non-E1 Chichon

measurements. Simultaneous measurements of SO 2

and aerosol volume concentrations made on the

lower edge of the volcanic cloud two weeks after

the eruption permitted a range of SO 2 conversion

rates to be estimated.

Introduction

The University of Minnesota Condensation Nu-

cleus Counter (UMCNC) (Wilson et ai.,1983), the

Ames Wire Impactor (AWl)(Oberbeck et al., 1983)

and the PMS ASAS-X optical particle counter

(Knollenberg and Huffman, 1983) provide indepen-

dent measures of aerosol concentration and were

operated simultaneously on NASA U-2 aircraft

before and after the eruption oF E1 Chichon. The

UMCNC measures the number concentration of parti-

cles larger than 0.01 _m in diameter with an

efficiency which depends upon particle diameter

and altitude. At 20 km altitude, the UMCNC coun-

ting efficiencles for 0.01 um, 0.02 um and 0.05 um

particles are about 55%, 70% and 90% respective-

ly. The ASAS-X continuously measures size distri-

butions of particles in the 0.I _m to 3 _m

diameter range. The ASAS-X data shown here were

provided by Knollenberg and Huffman (personal com-

munication). The ASAS-X sampling efficiency

decreases for particles larger than 0.5 um in

diameter due to inertial losses in the sampling

inlet. The data shown here have been corrected

for these losses using a scheme similiar to that

presented by Knollenberg and Huffman (1983). The

correction scheme is not yet in final form and may

change. The aerosol volumes calculated from the

ASAS-X number distributions are quite sensitive to

the assumed counting efficiencies. The AWl is used

to collect samples of one or two minutes duration

Copyright 1983 by the American Geophysical Union.
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which are analyzed to provide size distributions

in the range from 0.06 um to a few microns. AWl

data included in this paper were supplied by

Oberbeck, Snetsinger and Hays (personal communi-

cation). Whenever possible, data from both the

ASAS-X and AWl are used when considering

particles in their common size range.

Measurements

Table 1 lists each 1982 flight segment between

19.6 km and 21.6 km altitude for which UMCNC and

AWl or ASAS-X data are available. The starting

time and distance covered are listed with the

UMCNC average concentration and standard devia-

tion for the segment. The number concentration

measured with the AWl and/or the ASAS-X number and

volume concentrations are also given. The approx-

imate locations (S. Scott, personal communication)

of the longer flight segments are indicated on

figure I. The start and end points of the three

segments following path d are indicated by dif-

ferent symbols. For most flight segments, the

small standard deviations of the UMCNC and ASAS-X

measurements indicate that the aerosol was quite

uniform over the segment and the AWI data is taken

to be representative of the segment in these

cases. On 19 April and 5 May, the aerosol shows

considerable spatial [nhomogeneity and the AWI

data can not be considered representative of the

segments. Data from these two flights are plotted

on figures 2 and 3.

Measurements Free from the Effects of E1 Chichon

Flight segements a and b were made prior to

the eruption and flights c and e were made when

the main volcanic cloud was thought to be south

of the flight paths. These flights showed spatial

homogeneity in the 20 km aerosol. For each of

these segments, the standard deviations of the

hundreds of UMCNC measurements were less than 7%

of the mean concentrations. The standard devia-

tion of the concentrations measured by the ASAS-X

over these intervals were almost entirely ex-

plained by the random fluctuations in the ten

second ASAS-X samples. The variability due to

changes in aircraft position was small.

The UMCNC concentration measured on these four

segments exceeds the concentrations measured by

the AWl and the ASAS-X by a factor of 3 or more.

The second AWl sample shown for April 19 and that

of May 5 were collected at times when the UMCNC

and ASAS-K concentrations were near the non-E1

Chichon levels (see figures 2 and 3) and show

concentrations well below that indicated by the

UMCNC. These observations suggest that the number

distribution of the non-E1 Chichon aerosol was

dominated by particles smaller than 0.i um or

0.06 um. Note that the agreement among the three
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approach that indicated by the UMCNC on many of

these segments. Segment m is an exception where

the ASAS-X number concentration is not signifi-

cantly increased over non-E1 Chichon levels.

Aerosol volumes calculated from the ASAS-X

data generally show increasing values with time

but the cloud may have been settling and apparent

temporal variations may have been due to succes-

sive sampling of richer and richer cloud layers.

Evidence for New Particle Formation in the Cloud

The elevated concentrations observed on 19

April and 5 May can not be explained by assuming

that large numbers of particles were injected into

the stratosphere at the time of the eruption.

Estimates of free-molecule regime coagulation were

made assuming self-preserving (Friedlander, 1977)

size distributions. Conservative estimates of the

volume of the coagulating aerosol were made by

including only the sub-.l _m aerosol and assuming

that its diameter was 0.01 _m. The UMCNC counting

efficiency was accounted for in these calcula-

tions. They show that arbitrarily large con-

centrations of injected aerosol would have decayed

to concentrations less than 20% and 40% of the

peak values observed on 19 April and 5 May. Thus

new particle formation occured between the injec-

tion of the volcanic material and the measure-

ments. This implies that gas-phase reactions

contributed to the formation o_ secondary aerosol.

New particle formation was also observed following

the eruptions of Alaid and Mt. St. Helens (Hofmann

and Rosen, 1981 and Hofmann and Rosen, 1982).

SO 2 Conversion Rates Consistent with the

Measurements of April 19,1982

The conversion of gas-phase SO 2 to particle-

phase SO 4 accounts for much of the sub-micron

aerosol mass added to the stratosphere by the
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Fig. 2. Aerosol concentrations recorded on

flight of 19 April 1982. The dashed line

indicates segment >d<. The AWl data are indicated

by a +. SO 2 concentrations were measured during

intervals A and B.

5 May 1982

16 00 r8 O0 20:00 2200

Time, GMT

Fig. 3. Aerosol concentrations recorded on

of 5 May 1982. Flight segment I _ isflight

indicated by the dashed line. The AWl data are

indicated by a +.

volcano. Using equation I, the _ractlon, F, of

injected SO 2 converted to SO4 was calculated for

maximum concentrations observed on 19 April.

F=[SO4s]/([SO2]+[SO4s]) (I)

[S04s] equals the concentration of secondary sul-

fate molecules added to the aerosol phase as a

result of the oxidation of SO 2. [SO2] is the

concentration of sulfur dioxide. F applies to the

time interval between the eruption and the meas-

urements of SO 4 and SO 2. The calculation assumes

that the gases and particles experience the same

dilution and dispersion.

SO 2 concentrations (Vedder, et al. 1983) were

reported for periods A (35 pptv) and B (40pptv)

shown on figure 2. Aerosol measured during period

B shows evidence of new particle formation while

period A measurements resemble the non-E1 Chichon

aerosol. Peak concentrations of sub-O.l _m aero-

sol occured during 36% of period B and the

corresponding peak values of [SO 2] were estimated

by assuming that non-peak values in B equaled
those measured in interval A.

[S04s ] was calculated from aerosol volume

measured with the ASAS-X or estimated from UMCNC

measurements. Woods and Chuan (1983) report that

the suhmicron aerosol measured on the April 19

flight consisted largely of sulfuric acid and

that aerosol larger than 3 U m contained minerals.

To avoid including these minerals as well as

sulfates settling from higher in the cloud, par-

ticles smaller than 2.5 l]m were used in the

calculations. It was assumed that the sulfate

consisted of a 65% solution by weight of H2SO 4 and

H20 (Harder et al., 1983). The use of aerosol

volume concentration as a measure of sulfate was

tested by comparing filter measurements of sulfate

(B. Gandrud, personal communication, 1983) with

simultaneous ASAS-X size distributions made on 5

May. The sub-2.5 pm ASAS-X volume concentrations

accounted for less than 45% of the filter sulfate

on the average. Regression analysis done on the
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